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ABSTRACT

An endocyclic trans-amide linkage within the macrocyclic antitumor agent cryptophycin-52 was replaced by a 1,4-disubstituted 1H-1,2,3-triazole ring.
Macrocyclisation of the triazole analogue was accomplished by macrolactamization as well as by Cu(I)-mediated “click”-cyclization. Compared to
cryptophycin-52, in vitro cytotoxicity of “clicktophycin-52” against the multidrug resistant human cancer cell line KB-V1 is only slightly reduced.

Since the CuI catalyzed azide-alkyne coupling was discovered
by the workgroups of Meldal and Sharpless,1 this so-called
“click”-reaction found numerous applications.2-4 Although size
and dipole moment of the metabolically inert 1,4-disubsti-
tuted triazole ring are larger compared to a trans-amide
bond,2 the overall physicochemical properties are similar
enough to enable these triazoles to act as trans-amide
mimetics.3,5-12 The bioisosterism has been exemplified by
triazole analogues of a matrix metalloprotease inhibitor,6 of
the immuno stimulating natural compound R-galactosylcer-

amide,7 and of capsaicin in its role as agonist of the vanilloid-
receptor TRPV1.9 Further examples are triazole analogues
of the tyrosinase inhibitor cyclo-[Pro-Tyr-Pro-Val],10 of the
histone deacetylase inhibitor apicidin,8 and of peptides
containing the pharmacophoric residues of somatostatin.11

Moreover, X-ray analysis revealed the triazole ring within
an analogue of the HIV-1-protease inhibitor amprenavir to
interact with the enzyme in the same way as an amide bond
in the parent compound.12
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Cryptophycins are macrocyclic depsipeptides produced,
for example, by cyanobacteria of genus Nostoc.13 Especially,
cryptophycin-1 (1) displays high cytotoxicity against mul-
tidrug resistant cancer cells14 and against solid tumors
implanted in mouse xenografts.13a However, the synthetic
drug candidate cryptophycin-52 (2) failed in phase II clinical
trials because of neurotoxicity.15 Cryptophycin derivatives
have been shown to possess a trans-amide bond between
units B and C and a cis-amide bond between units A and
B.13b We envisioned to replace the peptide linkage between
cryptophycin units B and C by a 1,4-disubstituted 1H-1,2,3-
triazole ring to probe the bioequivalence. Cryptophycins can
be retrosynthetically subdivided into four amino and hydroxy
carboxylic acid building blocks (units A-D, Figure 1).

Several elegant approaches as well as ample structure-activity
relationship studies have been reviewed.15

The unit B alkyne building block 8 represents a key
intermediate in the synthesis of the cryptophycin-52 triazole
analogue 3 and was obtained by Seyferth-Gilbert homologa-
tion16 of aldehyde 5. Starting with reduction of 417 with DIBAL-
H, aldehyde 5 was not purified because of its intrinsic
stereochemical lability.18 The required Seyferth reagent di-
methyldiazomethyl phosphonate (7) was obtained in two steps
from phthalimide 6 according to the slightly modified original

procedure of Seyferth et al.16a Phosphonate 7 was deprotonated
with sodium hydride and the resulting ylide reacted in situ with
5 yielding alkyne 8. Analysis of the enantiomeric purity of 8
revealed an enantiomeric excess of 68%. A 3-fold recrystalli-
zation improved its optical purity (>98% ee, chiral HPLC,
Chiralpak AD, eluent: i-PrOH/hexane 1: 10 v/v).

We first assembled the corresponding seco-compound 16
as starting material of a macrolactamization reaction to
investigate whether cyclization of the cryptophycin-52 tria-
zole analogue is generally feasible. In this previously
developed cyclization strategy,19 ring closure occurs by
amide formation between units A and B (Scheme 2).
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Scheme 2. Coupling Strategy 1: Ring Closure by
MacrolactamizationFigure 1. Structures of cryptophycins and their triazole analogue 3.

Scheme 1. Synthesis of Unit B Alkyne 8
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The unit C building block azidopivalic acid (10) was
obtained from commercially available chloropivalic acid (9).
DCC/DMAP-mediated condensation of 10 with the unit D
precursor 1120 afforded CD segment 12. The subsequent
[3 + 2]-cycloaddition between 12 and unit B alkyne 8 was
performed in the presence of CuI, affording BCD segment
13. The corresponding unit A precursor 15 was obtained by
completely E-selective cross-metathesis reaction of 14 and
tert-butyl acrylate, mediated by Grubbs’ second generation
catalyst.21 Hydrogenolytic deprotection of BCD segment 13
was followed by esterification with unit A precursor 15 to
afford the seco-compound 16. All three acid-labile protective
groups of 16 were cleaved simultaneously and the product
was directly subjected to macrolactamisation under pseudohigh
dilution conditions to afford 17 in 74% yield starting from
16.

“Click” [3 + 2]-cyclizations have been introduced by
Meldal et al. in 2004.22 They typically afford a mixture of
corresponding cyclomonomers, cyclodimers, and cyclotri-
mers, which is explained by competing complexation of one
CuI ion by two acetylide moieties.3 The cyclo-oligomers
sometimes even are formed as the main products,23a while
acyclic oligomers are not observed.3

The corresponding linear precursor 25 was synthesized to
study the macrocyclisation of “clicktophycin-52′′, a crypto-
phycin-52 triazole analogue, by CuI catalyzed azide-alkyne
coupling (Scheme 3).

The previously described unit A methyl ester 18 was
carefully saponified and crude 19 was used directly because
of its limited stability. Selective coupling of 19 and amine
20 was mediated by EDC/HOAt. The resulting AB segment
21 was condensed with freshly prepared unit D precursor
2224 to yield TBS-protected DAB-segment 23. Cleavage of
the silyl ether affording secondary alcohol 24 was followed
by Steglich esterification with azidopivalic acid (10) to give
the seco-precursor 25.

Schreiber and co-workers optimized reaction conditions
for CuI catalyzed solution phase ring closure of 17-membered
peptidomimetics. By using CuI/DIPEA in toluene, cyclo-
monomers were obtained as main products in yields ranging
from 53 to 83%, while unwanted cyclo-oligomers were only
obtained as minor byproduct.23b Under similar conditions,
van Maarseveen et al. achieved a high yielding cyclization

of otherwise inaccessible cyclotetrapeptide mimetics.7 Fol-
lowing the first procedure,23b we cyclized the cryptophycin
precursor 25 at room temperature in 4 mM toluene solution.
An inseparable mixture of cyclomonomer and cyclodimer
was obtained in a combined yield of 84%. Alternative
solvent/CuI source combinations such as DMF/CuI and H2O/
t-BuOH/CuSO4/ascorbate lead to incomplete conversions.
After acidic cleavage of the acetonides, free diols 17 and 26
were cleanly separated by column chromatography. Cy-
clomonomer 17 was isolated as main product in 32% yield
over two steps, whereas cyclodimer 26 was obtained in 27%
yield.
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Scheme 3. Coupling Strategy 2: Macrocyclization by “Click”
Reaction
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Finally, syn-diol 17 was converted into epoxide 3 in 59%
yield over three steps (Scheme 4).19,25 The final epoxide

formation was performed in a potassium carbonate/ethylene
glycol/DME emulsion as reaction medium.26

In cytotoxicity assays against the multidrug resistant
human cervix carcinoma cell line KB-V1, triazole analogue
3 exhibited an IC50 of 3.2 nM. Hence, in this one-point
comparison, it is only about five times less potent than the
parent cryptophycin-52 (2) (IC50 ) 0.7 nM). The triazole
analogue possibly may show improved activity over cryp-
tophycin-52 when assayed against a broad panel of tumor
cells.

Since NMR signals of most carbon and hydrogen atoms
within units A and D of 3 are markedly shifted compared to
those of cryptophycin-52 (2), a distinct influence of the
triazole ring on the preferred conformation of the macrocycle
seems likely (see Supporting Information).

After all, in comparison to the 16-membered ring of 2,
the macrocyclic structure of its triazole-analogue 3 is widened
to a 17-membered ring.

In conclusion, the largely maintained bioactivity of “click-
tophycin-52” (3) compared to cryptophycin-52 (2) underlines
the considerable bioequivalence of trans-amides and 1,4-
disubstituted 1H-1,2,3-triazoles as linkages within peptidic
structures.
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Scheme 4. Diol-Epoxide Conversion to “Clicktophycin-52” (3)
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